Farm Water Management Plan Plan Template

Know your numbers. Know your needs. Know the gap. **Have a plan.**

This project received funding from the Australian Government's Future Drought Fund

Contents

This table of contents is an outline of some of the steps and details required to be able to come up with a realistic Farm Water Management Plan. It is not meant to be laid out exactly, however it is important to cover the 'topics' listed and document your own information in enough detail so you can come back to this plan in the future and know what you were thinking and planning. (Items with '*' are considered essential in a Farm Water Management Plan document.)

Part I. Weathering the dry		Checklist
Introduction and Drought Strategy		
1. Introduction		
1A. Property details	4	*
1B. What is the purpose of this plan? What do you want this plan to be able to do?	5	
IC. Farm Map	5	*
2. Drought Strategy		
2A. Reflections on previous drought – learnings, lessons, what would you do differently?	6	
2B. What is your overall strategy in the event of an oncoming drought/dry season 'Drought Strategy'?	6	*
1. Do you intend to retain all stock?	6	
2. If not, what classes and type of stock are you going to retain?	6	
3. What numbers of each stock class would you like to retain?	6	
4. How do you plan to manage those stock with regard to feeding/watering i.e. are you going to use a stock containment/management area or sacrifice paddock?	6	
2C. Trigger points for action prior to or during drought.	7	
1. At what point do you destock? (Table with timelines)	7	
2. What are the ground cover trigger thresholds?	7	
3. When are you doing your feed audit? – Feed On Offer (FOO) and stored	7	
Part II. Water metrics		
Understanding your water needs		
Farm water budget/audit	8	
1. Quantifying Farm Water Requirements	9	*
1A. Livestock Requirements	9	*
1B. Garden Water Requirements	9	*
IC. Household Water Requirements	10	*
1D. General Farm Needs	10	*

This template is produced as part of the Murray LLS 'Farm Water Management Planning' project, supported by the Southern NSW Innovation Hub through funding from the Australian Government's Future Drought Fund.

Contents

Part III. From drop to data		Checklist
Determining water storage capacity and losses – dams and ta	nks	
Rectangular Dam	11	
Circular Dam	11	
Triangular Dam (or gully dam)	11	
Estimating Tank Capacity	11	
1. Estimating Farm Water Storage Capacity	12	*
2. Quantifying Losses from Dams	13	
2A. Evaporation Loss	13	*
2B. Seepage Loss	14	*
2C. Residual or 'dead' water	15	*
Part IV. Know your flow		
Getting the water to where and when you need it		
What are your options? (Based on Parts I, II and III above.)		
1. How long will the water last over the 'summer period'?	16	
2. Checking supply flow rate and trough capacity	17	
3. Options and actions		
Planning: Take a 'big' picture approach to plan a whole system – it can be modular and rolled out sequentially	18	*
Options	18	*
General	19	
Financial options	20	
Your estimated costings	20	
Farm map with options set out	21	*
Next steps	22	
Appendix 1		
Other Water Sources	23	

This template is produced as part of the Murray LLS 'Farm Water Management Planning' project, supported by the Southern NSW Innovation Hub through funding from the Australian Government's Future Drought Fund.

Part I. Weathering the dry

Introduction and Drought Strategy

1. Introduction

1A. Property details

Property name:	
Location:	
Property size:	
Annual median rainfall:	
Enterprises:	
Household residents:	
Garden area:	

Livestock:	
Crop:	
House & shed tank:	

1B. What is the purpose of this plan?What do you want this plan to be able to do?

1C. Farm Map

2. Drought Strategy

This will help dictate what actions you may need to take once you have done a Farm Water Budget/audit and determine the amount of water you will want to have on hand.

NOTE: (from 'Managing Drought' DPI publication) - p11. "Your drought strategy objectives should be clear and wherever possible be stated in numbers, dates or dollars." See also the '**Drought Plan – Template**' as a useful tool.

2A. Reflections on previous drought – learnings, lessons, what would you do differently?

2B. What is your overall strategy in the event of an oncoming drought/dry season 'Drought Strategy'?

1. Do you intend to retain all stock?

2. If not, what classes and type of stock are you going to retain?

3. What numbers of each stock class would you like to retain?

4. How do you plan to manage those stock with regard to feeding/watering i.e. are you going to use a stock containment/management area or sacrifice paddock?

2C. Trigger points for action prior to or during drought.

1. At what point do you destock? (Table with timelines)

2. What are the ground cover trigger thresholds?

3. When are you doing your feed audit? – Feed On Offer (FOO) and stored

Part II. Water metrics

Understanding your water needs

Farm water budget/audit

Total supply and demand from Table 9 and Table 10.

'Annual' TOTAL F	Farm 'drought' Water	Budget — Based on 18	l days of 'summer peri	od' calculations
Drought stocking				
Storage source	Available storage (ML)	Total demand from each source (ML)	Weeks of water available (at rates of consumption)	Years of storage at drought stocking rates
Dams				
Domestic & other tanks				
Totals:				

It is highly desirable in planning your farm water needs to have 2 years supply on hand.

Whether you have 'adequate supply', or a 'deficit' is calculated by:

Adequate/deficit = Total available storage (ML) - (2 x total annual demand) (ML)

Total available storage (ML)	Total annual demand (ML)	Total demand for 2 years (ML)	Supply - demand	Adequate (+ve) or deficit (-ve) (ML)

1A. Livestock Requirements

How much water does the livestock use in summer (October to March – 181 days)? (Refer to Farm Water AgGuide Appendix 3, Table 27, p.125)

Total daily water requirement (L) = daily requirement per head (L) x number of stock

Table 1 Livestock Water Requirements

Livestock type	Number	Daily water requirement (L)	No. days in summer	Total water required for summer (L)
Total livestock requirem	ent:			

1B. Garden Water Requirements

How much water does the garden use in summer? Range 10,000–30,000 L/ha/day (1-3 L/m², Farm Water AgGuide Table 11, p.16)

Total water required = area (Ha) x daily required (L) x No. summer days

Table 2 Garden Water Requirements

Garden area (Ha)	Daily water requirement (L/Ha)	No. days in summer	Total water required for summer (L)

1C. Household Water Requirements

How much water does the household use in summer? (Refer to Farm Water AgGuide Tables 11, 12, p.16)

Table 3 Household Water Requirements

Househo	ld	Daily water requirement (L/person)	No. days	Total water required for summer (L)
No. residents:				
Evaporative air	con			
Other				
Total:				

1D. General Farm Needs

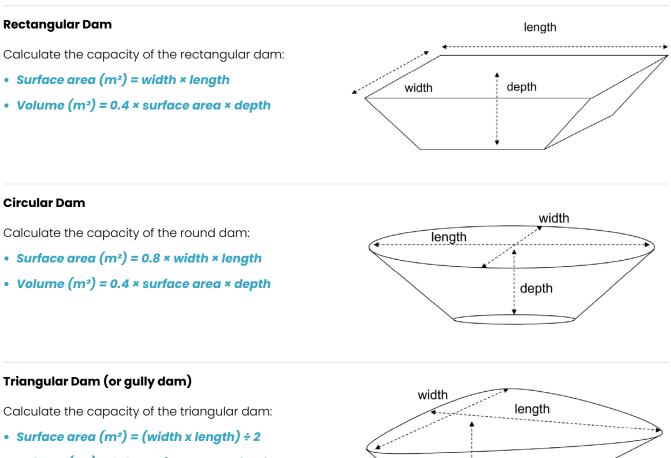
(Refer to Farm Water AgGuide Table 17, p.24)

Spraying – e.g. first application requires 100 L/ha, second application requires 70 L/Ha.

Table 4 Spraying Water Requirements

	Application rate (L/Ha)	Crop Area (Ha)	Total water required per application (L)
Spray 1			
Spray 2			
Total:			

Firefighting – 10 000 L/Ha home yard. See Farm Water AgGuide Table 17, p.24.


 Table 5 Firefighting Water Requirements

Firefighting	Recommended storage rate or L/area	Home yard area (Ha)	Total water to store (L)
Buildings			
House yard			
Total:			

Part III. From drop to data

Determining water storage capacity and losses dams and tanks

• Volume (m³) = 0.4 × surface area × depth

depth

radius (r)

Estimating Tank Capacity

Calculate the capacity of the tanks:

- Surface area (m²) = π × r² (π = 3.14, r² = r × r, where 'r' = radius)
- Volume (m³) = π r² × height

height

1. Estimating Farm Water Storage Capacity

Table 6A Your farm dams

Table 6B Your farm tanks

Tank storage name	Radius (m)	Height (m)	Surface area (m²)	Approx volume (m³)	Water storage capacity (ML)
Other tank storage:					
Total tank storage:					
Total water and tank st					

To record details of additional water storages, see Appendix 1, Page 23.

2. Quantifying Losses from Dams

2A. Evaporation Loss Your location: Jan Feb Jun Jul Oct Nov Dec Mar Apr May Aug Sep Mean daily evaporation (mm) Decile 1 monthly drought rainfall (mm) Note: Data can be sourced from: From the table above, determine the average (mean) daily summer evaporation (mm) in your location

Average daily summer evaporation = (sum daily mm for October to March) ÷ 6

Average daily summer evaporation =	mm ÷6 =	mm/day
Average summer drought rainfall =	mm for months C	october to March
Average daily drought rainfall =	mm ÷ 181 =	mm/day
Net daily drought evaporation =	- =	mm/day

In Table 7A below, calculate the summer evaporation loss using this formula: **Evaporation loss (L) = surface area (m^2) × (average daily evaporation (mm) – average daily drought rain) × no. days**

Table 7A Your farm dam evaporation

Dam	Surface area (m²) (from Table 6)	No. days	Daily evaporation – daily rain (mm)	Total evaporation loss (L)
Total:				

2B. Seepage Loss

Estimate the seepage loss from the dams over summer.

Note: Seepage loss will depend on the material on which a dam is located and built and the quality of construction. Maximum acceptable loss is 5 mm/day — if your losses are above this, the dam needs attention.

In Table 7B below, calculate the summer seepage loss in L using this formula:

Seepage loss (L) = surface area (m²) × seepage (mm) × no. days

Table 7B Your farm dam seepage

Dam	Surface area (m²) (from Table 6)	No. days	Summer seepage (mm)	Summer seepage loss (L)
Total:				

2C. Residual or 'dead' water

Sometimes a portion of water in a dam cannot be retrieved. This is referred to as residual or 'dead' water. In Table 8, estimate the residual water in the dams.

Table 8 Your residual water

Dam	Total volume (m³) (from Table 6)	Residual water (%)	Residual water (m³)	Residual water (L)
Total:				

Part IV. Know your flow

Getting the water to where and when you need it

What are your options? (Based on Parts I, II and III above.)

1. How long will the water last over the 'summer period'?

Table 9

Water usage over summer	Your farm		
No. of days in summer		Α	
Livestock	(Table 1)		
Garden	(Table 2)		
Household (Table 3)			
General farm needs	(Table 4)		
Firefighting	(Table 5)		
Total summer usage:		В	
Daily summer water consumption:	$(B \div A)$		С

Table 10

Total storage capacity (Litres)	(Table 6)	D
Less evaporation losses	(Table 7A)	E
Less estimated seepage losses	(Table 7B)	F
Less residual water	(Table 8)	G
Available water:	(D – E – F – G)	н
Days water will last:	$(H \div C)$	

2. Checking supply flow rate and trough capacity

Water must be supplied at least at the rate of stock and domestic usage. This sets the minimum flow rate that the pump and the pipework have to deliver. For our calculations, it is considered advisable to ensure all stock can be watered in a 4 hr (240 min) period. This allows for a fast steady stream of water for stock, and reduces the chances of fighting and dominance around troughs that can cause damage – i.e. broken valves, pipes kicked etc. The system needs to be able to meet this peak flow.

(Refer to Farm Water AgGuide Table 21, p.96)

Table 11

Peak flow rate for 4 hr watering (L/ min)					Trough capacity (L)	
Stock type	Number of stock	Daily intake (L/head)	Total daily requirement (L)	Flow rate required (L/min)	Volume (L/head)	Trough capacity required (L)
	А	В	$A \times B = C$	C ÷ 240 min	D	A × D
Total:						

3. Options and actions

Planning: Take a 'big' picture approach to plan a whole system - it can be modular and rolled out sequentially.

Options:

1.

2.

Options continued:

4.

5.

6. General:

Financial options:

Your estimated costings:

Item	Per-item cost \$	Total cost \$

Farm map with options set out:

Insert map with layout of proposed options – new dams, enlarged/ renovated dams, note actions on existing redundant dams (left open for backup, 'wet-land etc), likely route of pipes, location of pumps, tanks and troughs. Indicate where any new fencing may go.

Next steps:

Appendix 1

Other Water Sources

Water storage name	Width (m)	Length (m)	Depth (m)	Surface area (m²)	Approx volume (m³)	Water storage capacity (ML)
Total other water stora						